Winter Special Flat 65% Limited Time Discount offer - Ends in 0d 00h 00m 00s - Coupon code: suredis

Google Professional-Data-Engineer Google Professional Data Engineer Exam Exam Practice Test

Google Professional Data Engineer Exam Questions and Answers

Question 1

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 2

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question 3

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question 4

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question 5

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question 6

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Question 7

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question 8

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question 9

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question 10

Which of these are examples of a value in a sparse vector? (Select 2 answers.)

Options:

A.

[0, 5, 0, 0, 0, 0]

B.

[0, 0, 0, 1, 0, 0, 1]

C.

[0, 1]

D.

[1, 0, 0, 0, 0, 0, 0]

Question 11

If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?

Options:

A.

Unsupervised learning

B.

Regressor

C.

Classifier

D.

Clustering estimator

Question 12

Which of these is NOT a way to customize the software on Dataproc cluster instances?

Options:

A.

Set initialization actions

B.

Modify configuration files using cluster properties

C.

Configure the cluster using Cloud Deployment Manager

D.

Log into the master node and make changes from there

Question 13

By default, which of the following windowing behavior does Dataflow apply to unbounded data sets?

Options:

A.

Windows at every 100 MB of data

B.

Single, Global Window

C.

Windows at every 1 minute

D.

Windows at every 10 minutes

Question 14

How would you query specific partitions in a BigQuery table?

Options:

A.

Use the DAY column in the WHERE clause

B.

Use the EXTRACT(DAY) clause

C.

Use the __PARTITIONTIME pseudo-column in the WHERE clause

D.

Use DATE BETWEEN in the WHERE clause

Question 15

The YARN ResourceManager and the HDFS NameNode interfaces are available on a Cloud Dataproc cluster ____.

Options:

A.

application node

B.

conditional node

C.

master node

D.

worker node

Question 16

Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?

Options:

A.

A sequential numeric ID

B.

A timestamp followed by a stock symbol

C.

A non-sequential numeric ID

D.

A stock symbol followed by a timestamp

Question 17

Which of the following is NOT a valid use case to select HDD (hard disk drives) as the storage for Google Cloud Bigtable?

Options:

A.

You expect to store at least 10 TB of data.

B.

You will mostly run batch workloads with scans and writes, rather than frequently executing random reads of a small number of rows.

C.

You need to integrate with Google BigQuery.

D.

You will not use the data to back a user-facing or latency-sensitive application.

Question 18

To run a TensorFlow training job on your own computer using Cloud Machine Learning Engine, what would your command start with?

Options:

A.

gcloud ml-engine local train

B.

gcloud ml-engine jobs submit training

C.

gcloud ml-engine jobs submit training local

D.

You can't run a TensorFlow program on your own computer using Cloud ML Engine .

Question 19

If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?

Options:

A.

1 continuous and 2 categorical

B.

3 categorical

C.

3 continuous

D.

2 continuous and 1 categorical

Question 20

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Question 21

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question 22

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Question 23

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question 24

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Question 25

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question 26

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question 27

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question 28

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question 29

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question 30

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question 31

You need to create a new transaction table in Cloud Spanner that stores product sales data. You are deciding what to use as a primary key. From a performance perspective, which strategy should you choose?

Options:

A.

The current epoch time

B.

A concatenation of the product name and the current epoch time

C.

A random universally unique identifier number (version 4 UUID)

D.

The original order identification number from the sales system, which is a monotonically increasing integer

Question 32

You are creating a data model in BigQuery that will hold retail transaction data. Your two largest tables, sales_transation_header and sales_transation_line. have a tightly coupled immutable relationship. These tables are rarely modified after load and are frequently joined when queried. You need to model the sales_transation_header and sales_transation_line tables to improve the performance of data analytics queries. What should you do?

Options:

A.

Create a sal es_transaction table that Stores the sales_tran3action_header and sales_transaction_line data as a JSON data type.

B.

Create a sale3_transaction table that holds the sales_transaction_header information as rows and the

sales_transaction_line rows as nested and repeated fields.

C.

Create a sale_transaction table that holds the sales_transaction_header and sales_transaction_line information as rows, duplicating the sales_transaction_header data for each line.

D.

Create separate sales_transation_header and sales_transation_line tables and. when querying, specify the sales transition line first in the WHERE clause.

Question 33

You want to build a managed Hadoop system as your data lake. The data transformation process is composed of a series of Hadoop jobs executed in sequence. To accomplish the design of separating storage from compute, you decided to use the Cloud Storage connector to store all input data, output data, and intermediary data. However, you noticed that one Hadoop job runs very slowly with Cloud Dataproc, when compared with the on-premises bare-metal Hadoop environment (8-core nodes with 100-GB RAM). Analysis shows that this particular Hadoop job is disk I/O intensive. You want to resolve the issue. What should you do?

Options:

A.

Allocate sufficient memory to the Hadoop cluster, so that the intermediary data of that particular Hadoop job can be held in memory

B.

Allocate sufficient persistent disk space to the Hadoop cluster, and store the intermediate data of that particular Hadoop job on native HDFS

C.

Allocate more CPU cores of the virtual machine instances of the Hadoop cluster so that the networking bandwidth for each instance can scale up

D.

Allocate additional network interface card (NIC), and configure link aggregation in the operating system to use the combined throughput when working with Cloud Storage

Question 34

You are updating the code for a subscriber to a Put/Sub feed. You are concerned that upon deployment the subscriber may erroneously acknowledge messages, leading to message loss. You subscriber is not set up to retain acknowledged messages. What should you do to ensure that you can recover from errors after deployment?

Options:

A.

Use Cloud Build for your deployment if an error occurs after deployment, use a Seek operation to locate a tmestamp logged by Cloud Build at the start of the deployment

B.

Create a Pub/Sub snapshot before deploying new subscriber code. Use a Seek operation to re-deliver messages that became available after the snapshot was created

C.

Set up the Pub/Sub emulator on your local machine Validate the behavior of your new subscriber togs before deploying it to production

D.

Enable dead-lettering on the Pub/Sub topic to capture messages that aren't successful acknowledged if an error occurs after deployment, re-deliver any messages captured by the dead-letter queue

Question 35

You are administering a BigQuery on-demand environment. Your business intelligence tool is submitting hundreds of queries each day that aggregate a large (50 TB) sales history fact table at the day and month levels. These queries have a slow response time and are exceeding cost expectations. You need to decrease response time, lower query costs, and minimize maintenance. What should you do?

Options:

A.

Build materialized views on top of the sales table to aggregate data at the day and month level.

B.

Build authorized views on top of the sales table to aggregate data at the day and month level.

C.

Enable Bl Engine and add your sales table as a preferred table.

D.

Create a scheduled query to build sales day and sales month aggregate tables on an hourly basis.

Question 36

You operate an IoT pipeline built around Apache Kafka that normally receives around 5000 messages per second. You want to use Google Cloud Platform to create an alert as soon as the moving average over 1 hour drops below 4000 messages per second. What should you do?

Options:

A.

Consume the stream of data in Cloud Dataflow using Kafka IO. Set a sliding time window of 1 hour every 5 minutes. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.

B.

Consume the stream of data in Cloud Dataflow using Kafka IO. Set a fixed time window of 1 hour. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.

C.

Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to Cloud Bigtable. Use Cloud Scheduler to run a script every hour that counts the number of rows created in Cloud Bigtable in the last hour. If that number falls below 4000, send an alert.

D.

Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to BigQuery. Use Cloud Scheduler to run a script every five minutes that counts the number of rows created in BigQuery in the last hour. If that number falls below 4000, send an alert.

Question 37

You are responsible for writing your company’s ETL pipelines to run on an Apache Hadoop cluster. The

pipeline will require some checkpointing and splitting pipelines. Which method should you use to write the

pipelines?

Options:

A.

PigLatin using Pig

B.

HiveQL using Hive

C.

Java using MapReduce

D.

Python using MapReduce

Question 38

You are creating a new pipeline in Google Cloud to stream IoT data from Cloud Pub/Sub through Cloud Dataflow to BigQuery. While previewing the data, you notice that roughly 2% of the data appears to be corrupt. You need to modify the Cloud Dataflow pipeline to filter out this corrupt data. What should you do?

Options:

A.

Add a SideInput that returns a Boolean if the element is corrupt.

B.

Add a ParDo transform in Cloud Dataflow to discard corrupt elements.

C.

Add a Partition transform in Cloud Dataflow to separate valid data from corrupt data.

D.

Add a GroupByKey transform in Cloud Dataflow to group all of the valid data together and discard the rest.

Question 39

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

    No interaction by the user on the site for 1 hour

    Has added more than $30 worth of products to the basket

    Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

Options:

A.

Use a fixed-time window with a duration of 60 minutes.

B.

Use a sliding time window with a duration of 60 minutes.

C.

Use a session window with a gap time duration of 60 minutes.

D.

Use a global window with a time based trigger with a delay of 60 minutes.

Question 40

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

Options:

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Question 41

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Question 42

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

Options:

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Question 43

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

Options:

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Question 44

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Question 45

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

Options:

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Question 46

You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?

Options:

A.

Delete the table CLICK_STREAM, and then re-create it such that the column DT is of the TIMESTAMP type. Reload the data.

B.

Add a column TS of the TIMESTAMP type to the table CLICK_STREAM, and populate the numeric values from the column TS for each row. Reference the column TS instead of the column DT from now on.

C.

Create a view CLICK_STREAM_V, where strings from the column DT are cast into TIMESTAMP values. Reference the view CLICK_STREAM_V instead of the table CLICK_STREAM from now on.

D.

Add two columns to the table CLICK STREAM: TS of the TIMESTAMP type and IS_NEW of the BOOLEAN type. Reload all data in append mode. For each appended row, set the value of IS_NEW to true. For future queries, reference the column TS instead of the column DT, with the WHERE clause ensuring that the value of IS_NEW must be true.

E.

Construct a query to return every row of the table CLICK_STREAM, while using the built-in function to cast strings from the column DT into TIMESTAMP values. Run the query into a destination table NEW_CLICK_STREAM, in which the column TS is the TIMESTAMP type. Reference the table NEW_CLICK_STREAM instead of the table CLICK_STREAM from now on. In the future, new data is loaded into the table NEW_CLICK_STREAM.

Question 47

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in the dashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Question 48

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

Options:

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Question 49

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

Options:

A.

Create a Google Cloud Dataflow job to process the data.

B.

Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.

C.

Create a Hadoop cluster on Google Compute Engine that uses persistent disks.

D.

Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.

E.

Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

Question 50

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.

The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read

.named(“ReadLogData”)

.from(“clouddataflow-readonly:samples.log_data”)

You want to improve the performance of this data read. What should you do?

Options:

A.

Specify the TableReference object in the code.

B.

Use .fromQuery operation to read specific fields from the table.

C.

Use of both the Google BigQuery TableSchema and TableFieldSchema classes.

D.

Call a transform that returns TableRow objects, where each element in the PCollexction represents a single row in the table.

Question 51

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Question 52

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

Options:

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Question 53

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Question 54

Your company is using WHILECARD tables to query data across multiple tables with similar names. The SQL statement is currently failing with the following error:

# Syntax error : Expected end of statement but got “-“ at [4:11]

SELECT age

FROM

bigquery-public-data.noaa_gsod.gsod

WHERE

age != 99

AND_TABLE_SUFFIX = ‘1929’

ORDER BY

age DESC

Which table name will make the SQL statement work correctly?

Options:

A.

‘bigquery-public-data.noaa_gsod.gsod‘

B.

bigquery-public-data.noaa_gsod.gsod*

C.

‘bigquery-public-data.noaa_gsod.gsod’*

D.

‘bigquery-public-data.noaa_gsod.gsod*`

Question 55

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patient records. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

Options:

A.

Add capacity (memory and disk space) to the database server by the order of 200.

B.

Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.

C.

Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.

D.

Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

Question 56

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Question 57

Your company is running their first dynamic campaign, serving different offers by analyzing real-time data during the holiday season. The data scientists are collecting terabytes of data that rapidly grows every hour during their 30-day campaign. They are using Google Cloud Dataflow to preprocess the data and collect the feature (signals) data that is needed for the machine learning model in Google Cloud Bigtable. The team is observing suboptimal performance with reads and writes of their initial load of 10 TB of data. They want to improve this performance while minimizing cost. What should they do?

Options:

A.

Redefine the schema by evenly distributing reads and writes across the row space of the table.

B.

The performance issue should be resolved over time as the site of the BigDate cluster is increased.

C.

Redesign the schema to use a single row key to identify values that need to be updated frequently in the cluster.

D.

Redesign the schema to use row keys based on numeric IDs that increase sequentially per user viewing the offers.