New Year Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Google Professional-Data-Engineer Google Professional Data Engineer Exam Exam Practice Test

Google Professional Data Engineer Exam Questions and Answers

Question 1

You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?

Options:

A.

Cancel

B.

Drain

C.

Stop

D.

Finish

Question 2

You want to use a BigQuery table as a data sink. In which writing mode(s) can you use BigQuery as a sink?

Options:

A.

Both batch and streaming

B.

BigQuery cannot be used as a sink

C.

Only batch

D.

Only streaming

Question 3

Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?

Options:

A.

A sequential numeric ID

B.

A timestamp followed by a stock symbol

C.

A non-sequential numeric ID

D.

A stock symbol followed by a timestamp

Question 4

Which methods can be used to reduce the number of rows processed by BigQuery?

Options:

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Question 5

You are planning to use Google's Dataflow SDK to analyze customer data such as displayed below. Your project requirement is to extract only the customer name from the data source and then write to an output PCollection.

Tom,555 X street

Tim,553 Y street

Sam, 111 Z street

Which operation is best suited for the above data processing requirement?

Options:

A.

ParDo

B.

Sink API

C.

Source API

D.

Data extraction

Question 6

When a Cloud Bigtable node fails, ____ is lost.

Options:

A.

all data

B.

no data

C.

the last transaction

D.

the time dimension

Question 7

Which of these is NOT a way to customize the software on Dataproc cluster instances?

Options:

A.

Set initialization actions

B.

Modify configuration files using cluster properties

C.

Configure the cluster using Cloud Deployment Manager

D.

Log into the master node and make changes from there

Question 8

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

Options:

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Question 9

Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

Options:

A.

The wide model is used for memorization, while the deep model is used for generalization.

B.

A good use for the wide and deep model is a recommender system.

C.

The wide model is used for generalization, while the deep model is used for memorization.

D.

A good use for the wide and deep model is a small-scale linear regression problem.

Question 10

Which role must be assigned to a service account used by the virtual machines in a Dataproc cluster so they can execute jobs?

Options:

A.

Dataproc Worker

B.

Dataproc Viewer

C.

Dataproc Runner

D.

Dataproc Editor

Question 11

Which of the following are feature engineering techniques? (Select 2 answers)

Options:

A.

Hidden feature layers

B.

Feature prioritization

C.

Crossed feature columns

D.

Bucketization of a continuous feature

Question 12

Which of the following statements about Legacy SQL and Standard SQL is not true?

Options:

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Question 13

What are two of the characteristics of using online prediction rather than batch prediction?

Options:

A.

It is optimized to handle a high volume of data instances in a job and to run more complex models.

B.

Predictions are returned in the response message.

C.

Predictions are written to output files in a Cloud Storage location that you specify.

D.

It is optimized to minimize the latency of serving predictions.

Question 14

In order to securely transfer web traffic data from your computer's web browser to the Cloud Dataproc cluster you should use a(n) _____.

Options:

A.

VPN connection

B.

Special browser

C.

SSH tunnel

D.

FTP connection

Question 15

If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?

Options:

A.

Unsupervised learning

B.

Regressor

C.

Classifier

D.

Clustering estimator

Question 16

What is the HBase Shell for Cloud Bigtable?

Options:

A.

The HBase shell is a GUI based interface that performs administrative tasks, such as creating and deleting tables.

B.

The HBase shell is a command-line tool that performs administrative tasks, such as creating and deleting tables.

C.

The HBase shell is a hypervisor based shell that performs administrative tasks, such as creating and deleting new virtualized instances.

D.

The HBase shell is a command-line tool that performs only user account management functions to grant access to Cloud Bigtable instances.

Question 17

Which of the following is not possible using primitive roles?

Options:

A.

Give a user viewer access to BigQuery and owner access to Google Compute Engine instances.

B.

Give UserA owner access and UserB editor access for all datasets in a project.

C.

Give a user access to view all datasets in a project, but not run queries on them.

D.

Give GroupA owner access and GroupB editor access for all datasets in a project.

Question 18

The Dataflow SDKs have been recently transitioned into which Apache service?

Options:

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Question 19

You are developing a software application using Google's Dataflow SDK, and want to use conditional, for loops and other complex programming structures to create a branching pipeline. Which component will be used for the data processing operation?

Options:

A.

PCollection

B.

Transform

C.

Pipeline

D.

Sink API

Question 20

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question 21

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question 22

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question 23

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question 24

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question 25

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 26

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Question 27

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question 28

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question 29

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Question 30

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

Options:

A.

Linear regression

B.

Logistic classification

C.

Recurrent neural network

D.

Feedforward neural network

Question 31

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

Options:

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Question 32

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Question 33

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

Options:

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Question 34

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Question 35

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

Options:

A.

Disable caching by editing the report settings.

B.

Disable caching in BigQuery by editing table details.

C.

Refresh your browser tab showing the visualizations.

D.

Clear your browser history for the past hour then reload the tab showing the virtualizations.

Question 36

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Question 37

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Question 38

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Question 39

You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current. What should you do?

Options:

A.

Use Analytics Hub to control data access, and provide third party companies with access to the dataset

B.

Create a Dataflow job that reads the data in frequent time intervals and writes it to the relevant BigQuery dataset or Cloud Storage bucket for third-party companies to use.

C.

Use Cloud Scheduler to export the data on a regular basis to Cloud Storage, and provide third-party companies with access to the bucket.

D.

Create a separate dataset in BigQuery that contains the relevant data to share, and provide third-party companies with access to the new dataset.

Question 40

Your neural network model is taking days to train. You want to increase the training speed. What can you do?

Options:

A.

Subsample your test dataset.

B.

Subsample your training dataset.

C.

Increase the number of input features to your model.

D.

Increase the number of layers in your neural network.

Question 41

You are using BigQuery with a regional dataset that includes a table with the daily sales volumes. This table is updated multiple times per day. You need to protect your sales table in case of regional failures with a recovery point objective (RPO) of less than 24 hours, while keeping costs to a minimum. What should you do?

Options:

A.

Schedule a daily BigQuery snapshot of the table.

B.

Schedule a daily export of the table to a Cloud Storage dual or multi-region bucket.

C.

Schedule a daily copy of the dataset to a backup region.

D.

Modify ETL job to load the data into both the current and another backup region.

Question 42

You are using Google BigQuery as your data warehouse. Your users report that the following simple query is running very slowly, no matter when they run the query:

SELECT country, state, city FROM [myproject:mydataset.mytable] GROUP BY country

You check the query plan for the query and see the following output in the Read section of Stage:1:

What is the most likely cause of the delay for this query?

Options:

A.

Users are running too many concurrent queries in the system

B.

The [myproject:mydataset.mytable] table has too many partitions

C.

Either the state or the city columns in the [myproject:mydataset.mytable] table have too many

NULL values

D.

Most rows in the [myproject:mydataset.mytable] table have the same value in the country column, causing data skew

Question 43

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?

Options:

A.

Set a single global window to capture all the data.

B.

Set sliding windows to capture all the lagged data.

C.

Use watermarks and timestamps to capture the lagged data.

D.

Ensure every datasource type (stream or batch) has a timestamp, and use the timestamps to define the logic for lagged data.

Question 44

You need to choose a database to store time series CPU and memory usage for millions of computers. You need to store this data in one-second interval samples. Analysts will be performing real-time, ad hoc analytics against the database. You want to avoid being charged for every query executed and ensure that the schema design will allow for future growth of the dataset. Which database and data model should you choose?

Options:

A.

Create a table in BigQuery, and append the new samples for CPU and memory to the table

B.

Create a wide table in BigQuery, create a column for the sample value at each second, and update the row with the interval for each second

C.

Create a narrow table in Cloud Bigtable with a row key that combines the Computer Engine computer identifier with the sample time at each second

D.

Create a wide table in Cloud Bigtable with a row key that combines the computer identifier with the sample time at each minute, and combine the values for each second as column data.

Question 45

You have terabytes of customer behavioral data streaming from Google Analytics into BigQuery daily Your customers' information, such as their preferences, is hosted on a Cloud SQL for MySQL database Your CRM database is hosted on a Cloud SQL for PostgreSQL instance. The marketing team wants to use your customers' information from the two databases and the customer behavioral data to create marketing campaigns for yearly active customers. You need to ensure that the marketing team can run the campaigns over 100 times a day on typical days and up to 300 during sales. At the same time you want to keep the load on the Cloud SQL databases to a minimum. What should you do?

Options:

A.

Create BigQuery connections to both Cloud SQL databases Use BigQuery federated queries on the two databases and the Google Analytics data on BigQuery to run these queries.

B.

Create streams in Datastream to replicate the required tables from both Cloud SQL databases to BigQuery for these queries.

C.

Create a Dataproc cluster with Trino to establish connections to both Cloud SQL databases and BigQuery, to execute the queries.

D.

Create a job on Apache Spark with Dataproc Serverless to query both Cloud SQL databases and the Google Analytics data on BigQuery for these queries.

Question 46

You are deploying MariaDB SQL databases on GCE VM Instances and need to configure monitoring and alerting. You want to collect metrics including network connections, disk IO and replication status from MariaDB with minimal development effort and use StackDriver for dashboards and alerts.

What should you do?

Options:

A.

Install the OpenCensus Agent and create a custom metric collection application with a StackDriver exporter.

B.

Place the MariaDB instances in an Instance Group with a Health Check.

C.

Install the StackDriver Logging Agent and configure fluentd in_tail plugin to read MariaDB logs.

D.

Install the StackDriver Agent and configure the MySQL plugin.

Question 47

You are designing a data mesh on Google Cloud by using Dataplex to manage data in BigQuery and Cloud Storage. You want to simplify data asset permissions. You are creating a customer virtual lake with two user groups:

• Data engineers, which require lull data lake access

• Analytic users, which require access to curated data

You need to assign access rights to these two groups. What should you do?

Options:

A.

1. Grant the dataplex.dataOwner role to the data engineer group on the customer data lake.

2. Grant the dataplex.dataReader role to the analytic user group on the customer curated zone.

B.

1. Grant the dataplex.dataReader role to the data engineer group on the customer data lake.

2. Grant the dataplex.dataOwner to the analytic user group on the customer curated zone.

C.

1. Grant the bigquery.dataownex role on BigQuery datasets and the storage.objectcreator role on Cloud Storage buckets to data engineers.

2. Grant the bigquery.dataViewer role on BigQuery datasets and the storage.objectViewer role on Cloud Storage buckets to analytic users.

D.

1. Grant the bigquery.dataViewer role on BigQuery datasets and the storage.objectviewer role on Cloud Storage buckets to data engineers.

2. Grant the bigquery.dataOwner role on BigQuery datasets and the storage.objectEditor role on Cloud Storage buckets to analytic users.

Question 48

You are designing a pipeline that publishes application events to a Pub/Sub topic. You need to aggregate events across hourly intervals before loading the results to BigQuery for analysis. Your solution must be scalable so it can process and load large volumes of events to BigQuery. What should you do?

Options:

A.

Create a streaming Dataflow job to continually read from the Pub/Sub topic and perform the necessary aggregations using tumbling windows

B.

Schedule a batch Dataflow job to run hourly, pulling all available messages from the Pub-Sub topic and performing the necessary aggregations

C.

Schedule a Cloud Function to run hourly, pulling all avertable messages from the Pub/Sub topic and performing the necessary aggregations

D.

Create a Cloud Function to perform the necessary data processing that executes using the Pub/Sub trigger every time a new message is published to the topic.

Question 49

You have designed an Apache Beam processing pipeline that reads from a Pub/Sub topic. The topic has a message retention duration of one day, and writes to a Cloud Storage bucket. You need to select a bucket location and processing strategy to prevent data loss in case of a regional outage with an RPO of 15 minutes. What should you do?

Options:

A.

1 Use a regional Cloud Storage bucket

2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs

3 Seek the subscription back in time by one day to recover the acknowledged messages

4 Start the Dataflow job in a secondary region and write in a bucket in the same region

B.

1 Use a multi-regional Cloud Storage bucket

2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs

3 Seek the subscription back in time by 60 minutes to recover the acknowledged messages

4 Start the Dataflow job in a secondary region

C.

1. Use a dual-region Cloud Storage bucket.

2. Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs

3 Seek the subscription back in time by 15 minutes to recover the acknowledged messages

4 Start the Dataflow job in a secondary region

D.

1. Use a dual-region Cloud Storage bucket with turbo replication enabled

2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs

3 Seek the subscription back in time by 60 minutes to recover the acknowledged messages

4 Start the Dataflow job in a secondary region.

Question 50

You are troubleshooting your Dataflow pipeline that processes data from Cloud Storage to BigQuery. You have discovered that the Dataflow worker nodes cannot communicate with one another Your networking team relies on Google Cloud network tags to define firewall rules You need to identify the issue while following Google-recommended networking security practices. What should you do?

Options:

A.

Determine whether your Dataflow pipeline has a custom network tag set.

B.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 for the Dataflow network tag.

C.

Determine whether your Dataflow pipeline is deployed with the external IP address option enabled.

D.

Determine whether there is a firewall rule set to allow traffic on TCP ports 12345 and 12346 on the subnet used by Dataflow workers.

Question 51

You are implementing security best practices on your data pipeline. Currently, you are manually executing jobs as the Project Owner. You want to automate these jobs by taking nightly batch files containing non-public information from Google Cloud Storage, processing them with a Spark Scala job on a Google Cloud Dataproc cluster, and depositing the results into Google BigQuery.

How should you securely run this workload?

Options:

A.

Restrict the Google Cloud Storage bucket so only you can see the files

B.

Grant the Project Owner role to a service account, and run the job with it

C.

Use a service account with the ability to read the batch files and to write to BigQuery

D.

Use a user account with the Project Viewer role on the Cloud Dataproc cluster to read the batch files and write to BigQuery

Question 52

Your organization has been collecting and analyzing data in Google BigQuery for 6 months. The majority of the data analyzed is placed in a time-partitioned table named events_partitioned. To reduce the cost of queries, your organization created a view called events, which queries only the last 14 days of data. The view is described in legacy SQL. Next month, existing applications will be connecting to BigQuery to read the events data via an ODBC connection. You need to ensure the applications can connect. Which two actions should you take? (Choose two.)

Options:

A.

Create a new view over events using standard SQL

B.

Create a new partitioned table using a standard SQL query

C.

Create a new view over events_partitioned using standard SQL

D.

Create a service account for the ODBC connection to use for authentication

E.

Create a Google Cloud Identity and Access Management (Cloud IAM) role for the ODBC connection and shared “events”

Question 53

You work for a large ecommerce company. You store your customers order data in Bigtable. You have a garbage collection policy set to delete the data after 30 days and the number of versions is set to 1. When the data analysts run a query to report total customer spending, the analysts sometimes see customer data that is older than 30 days. You need to ensure that the analysts do not see customer data older than 30 days while minimizing cost and overhead. What should you do?

Options:

A.

Set the expiring values of the column families to 30 days and set the number of versions to 2.

B.

Use a timestamp range filter in the query to fetch the customer's data for a specific range.

C.

Set the expiring values of the column families to 29 days and keep the number of versions to 1.

D.

Schedule a job daily to scan the data in the table and delete data older than 30 days.

Question 54

You are implementing a chatbot to help an online retailer streamline their customer service. The chatbot must be able to respond to both text and voice inquiries. You are looking for a low-code or no-code option, and you want to be able to easily train the chatbot to provide answers to keywords. What should you do?

Options:

A.

Use the Speech-to-Text API to build a Python application in App Engine.

B.

Use the Speech-to-Text API to build a Python application in a Compute Engine instance.

C.

Use Dialogflow for simple queries and the Speech-to-Text API for complex queries.

D.

Use Dialogflow to implement the chatbot. defining the intents based on the most common queries collected.

Question 55

You want to schedule a number of sequential load and transformation jobs Data files will be added to a Cloud Storage bucket by an upstream process There is no fixed schedule for when the new data arrives Next, a Dataproc job is triggered to perform some transformations and write the data to BigQuery. You then need to run additional transformation jobs in BigQuery The transformation jobs are different for every table These jobs might take hours to complete You need to determine the most efficient and maintainable workflow to process hundreds of tables and provide the freshest data to your end users. What should you do?

Options:

A.

1Create an Apache Airflow directed acyclic graph (DAG) in Cloud Composer with sequential tasks by using the Cloud Storage. Dataproc. and BigQuery operators

2 Use a single shared DAG for all tables that need to go through the pipeline

3 Schedule the DAG to run hourly

B.

1 Create an Apache Airflow directed acyclic graph (DAG) in Cloud Composer with sequential tasks by using the Dataproc and BigQuery operators.

2 Create a separate DAG for each table that needs to go through the pipeline

3 Use a Cloud Storage object trigger to launch a Cloud Function that triggers the DAG

C.

1 Create an Apache Airflow directed acyclic graph (DAG) in Cloud Composer with sequential tasks by using the Cloud Storage, Dataproc. and BigQuery operators

2 Create a separate DAG for each table that needs to go through the pipeline

3 Schedule the DAGs to run hourly

D.

1 Create an Apache Airflow directed acyclic graph (DAG) in Cloud Composer with sequential tasks by using the Dataproc and BigQuery operators

2 Use a single shared DAG for all tables that need to go through the pipeline.

3 Use a Cloud Storage object trigger to launch a Cloud Function that triggers the DAG

Question 56

You work for a large financial institution that is planning to use Dialogflow to create a chatbot for the company's mobile app You have reviewed old chat logs and lagged each conversation for intent based on each customer's stated intention for contacting customer service About 70% of customer requests are simple requests that are solved within 10 intents The remaining 30% of inquiries require much longer, more complicated requests Which intents should you automate first?

Options:

A.

Automate the 10 intents that cover 70% of the requests so that live agents can handle more complicated requests

B.

Automate the more complicated requests first because those require more of the agents' time

C.

Automate a blend of the shortest and longest intents to be representative of all intents

D.

Automate intents in places where common words such as "payment" appear only once so the software isn't confused

Question 57

Your infrastructure team has set up an interconnect link between Google Cloud and the on-premises network. You are designing a high-throughput streaming pipeline to ingest data in streaming from an Apache Kafka cluster hosted on-premises. You want to store the data in BigQuery, with as minima! latency as possible. What should you do?

Options:

A.

Use a proxy host in the VPC in Google Cloud connecting to Kafka. Write a Dataflow pipeline, read data from the proxy host, and write the data to BigQuery.

B.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Use a Google-provided Dataflow template to read the data from Pub/Sub, and write the data to BigQuery.

C.

Setup a Kafka Connect bridge between Kafka and Pub/Sub. Write a Dataflow pipeline, read the data from Pub/Sub, and write the data to

BigQuery.

D.

Use Dataflow, write a pipeline that reads the data from Kafka, and writes the data to BigQuery.

Question 58

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question 59

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question 60

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question 61

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all the data in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question 62

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question 63

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question 64

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question 65

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Question 66

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Question 67

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question 68

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id