Month End Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Google Professional-Cloud-Network-Engineer Google Cloud Certified - Professional Cloud Network Engineer Exam Practice Test

Google Cloud Certified - Professional Cloud Network Engineer Questions and Answers

Question 1

You successfully provisioned a single Dedicated Interconnect. The physical connection is at a colocation facility closest to us-west2. Seventy-five percent of your workloads are in us-east4, and the remaining twenty-five percent of your workloads are in us-central1. All workloads have the same network traffic profile. You need to minimize data transfer costs when deploying VLAN attachments. What should you do?

Options:

A.

Keep the existing Dedicated interconnect. Deploy a VLAN attachment to a Cloud Router in us-west2, and use VPC global routing to access workloads in us-east4 and us-central1.

B.

Keep the existing Dedicated Interconnect. Deploy a VLAN attachment to a Cloud Router in us-east4, and deploy another VLAN attachment to a Cloud Router in us-central1.

C.

Order a new Dedicated Interconnect for a colocation facility closest to us-east4, and use VPC global routing to access workloads in us-central1.

D.

Order a new Dedicated Interconnect for a colocation facility closest to us-central1, and use VPC global routing to access workloads in us-east4.

Question 2

You created a new VPC network named Dev with a single subnet. You added a firewall rule for the network Dev to allow HTTP traffic only and enabled logging. When you try to log in to an instance in the subnet via Remote Desktop Protocol, the login fails. You look for the Firewall rules logs in Stackdriver Logging, but you do not see any entries for blocked traffic. You want to see the logs for blocked traffic.

What should you do?

Options:

A.

Check the VPC flow logs for the instance.

B.

Try connecting to the instance via SSH, and check the logs.

C.

Create a new firewall rule to allow traffic from port 22, and enable logs.

D.

Create a new firewall rule with priority 65500 to deny all traffic, and enable logs.

Question 3

Question:

Your organization is deploying a mission-critical application with components in different regions due to strict compliance requirements. There are latency issues between different applications that reside in us-central1 and us-east4. The application team suspects the Google Cloud network as the source of the excessive latency despite using the Premium Network Service Tier. You need to use Google-recommended practices with the least amount of effort to verify the inter-region latency by investigating network performance. What should you do?

Options:

A.

Set up the Performance Dashboard in Network Intelligence Center. Select the traffic type (cross-zonal), the metric (latency - RTT), the time period, the desired regions (us-central1 and us-east4), and the network tier.

B.

Enable VPC Flow Logs for the VPC. Identify major bottlenecks from the application level using Flow Analyzer.

C.

Configure two Linux VMs in each zone for each region. Install the application, and run a load test using each zone from different regions.

D.

Configure a VM with a probe in Network Intelligence Center in each zone for each region. Choose the traffic type (cross-zonal), metric (latency - RTT), desired regions (us-central1 and us-east4), and the network tier.

Question 4

You have an HA VPN connection with two tunnels running in active/passive mode between your Virtual Private Cloud (VPC) and on-premises network. Traffic over the connection has recently increased from 1 gigabit per second (Gbps) to 4 Gbps, and you notice that packets are being dropped. You need to configure your VPN connection to Google Cloud to support 4 Gbps. What should you do?

Options:

A.

Configure the remote autonomous system number (ASN) to 4096.

B.

Configure a second Cloud Router to scale bandwidth in and out of the VPC.

C.

Configure the maximum transmission unit (MTU) to its highest supported value.

D.

Configure a second set of active/passive VPN tunnels.

Question 5

Your company has provisioned 2000 virtual machines (VMs) in the private subnet of your Virtual Private Cloud (VPC) in the us-east1 region. You need to configure each VM to have a minimum of 128 TCP connections to a public repository so that users can download software updates and packages over the internet. You need to implement a Cloud NAT gateway so that the VMs are able to perform outbound NAT to the internet. You must ensure that all VMs can simultaneously connect to the public repository and download software updates and packages. Which two methods can you use to accomplish this? (Choose two.)

Options:

A.

Configure the NAT gateway in manual allocation mode, allocate 2 NAT IP addresses, and update the minimum number of ports per VM to 256.

B.

Create a second Cloud NAT gateway with the default minimum number of ports configured per VM to 64.

C.

Use the default Cloud NAT gateway's NAT proxy to dynamically scale using a single NAT IP address.

D.

Use the default Cloud NAT gateway to automatically scale to the required number of NAT IP addresses, and update the minimum number of ports per VM to 128.

E.

Configure the NAT gateway in manual allocation mode, allocate 4 NAT IP addresses, and update the minimum number of ports per VM to 128.

Question 6

(You need to migrate multiple PostgreSQL databases from your on-premises data center to Google Cloud. You want to significantly improve the performance of your databases while minimizing changes to your data schema and application code. You expect to exceed 150 TB of data per geographical region. You want to follow Google-recommended practices and minimize your operational costs. What should you do?)

Options:

A.

Migrate your data to AlloyDB.

B.

Migrate your data to Spanner.

C.

Migrate your data to Firebase.

D.

Migrate your data to Bigtable.

Question 7

(You are deploying an application to Google Kubernetes Engine (GKE). The application needs to make API calls to a private Cloud Storage bucket. You need to configure your application Pods to authenticate to the Cloud Storage API, but your organization policy prevents the usage of service account keys. You want to follow Google-recommended practices. What should you do?)

Options:

A.

Create the GKE cluster and deploy the application. Request a security exception to create a Google service account key. Set the constraints/iam.serviceAccountKeyExpiryHours organization policy to 8 hours.

B.

Create the GKE cluster and deploy the application. Request a security exception to create a Google service account key. Set the constraints/iam.serviceAccountKeyExpiryHours organization policy to 24 hours.

C.

Create the GKE cluster with Workload Identity Federation. Configure the default node service account to access the bucket. Deploy the application into the cluster so the application can use the node service account permissions. Use Identity and Access Management (IAM) to grant the service account access to the bucket.

D.

Create the GKE cluster with Workload Identity Federation. Create a Google service account and a Kubernetes ServiceAccount, and configure both service accounts to use Workload Identity Federation. Attach the Kubernetes ServiceAccount to the application Pods and configure the Google service account to access the bucket with Identity and Access Management (IAM).

Question 8

You have configured a Compute Engine virtual machine instance as a NAT gateway. You execute the following command:

gcloud compute routes create no-ip-internet-route \

--network custom-network1 \

--destination-range 0.0.0.0/0 \

--next-hop instance nat-gateway \

--next-hop instance-zone us-central1-a \

--tags no-ip --priority 800

You want existing instances to use the new NAT gateway. Which command should you execute?

Options:

A.

sudo sysctl -w net.ipv4.ip_forward=1

B.

gcloud compute instances add-tags [existing-instance] --tags no-ip

C.

gcloud builds submit --config=cloudbuild.waml --substitutions=TAG_NAME=no-ip

D.

gcloud compute instances create example-instance --network custom-network1 \

--subnet subnet-us-central \

--no-address \

--zone us-central1-a \

--image-family debian-9 \

--image-project debian-cloud \

--tags no-ip

Question 9

You need to create the technical architecture for hybrid connectivity from your data center to Google Cloud This will be managed by a partner. You want to follow Google-recommended practices for production-level applications. What should you do?

Options:

A.

Ask the partner to install two security appliances in the data center. Configure one VPN connection from each of these devices to Google

Cloud, and ensure that the VPN devices on-premises are in separate racks on separate power and cooling systems.

B.

Configure two Partner Interconnect connections in one metropolitan area (metro). Make sure the Interconnect connections are placed in

different metro edge availability domains. Configure two VLAN attachments in a single region, and configure regional dynamic routing on

the VPC

C.

Configure two Partner Interconnect connections in one metro and two connections in another metro Make sure the Interconnect

connections are placed in different metro edge availability domains. Configure two VLAN attachments in one region and two VLAN

attachments in another region, and configure global dynamic routing on the VPC

D.

Configure two Partner Interconnect connections in one metro and two connections in another metro. Make sure the Interconnect connections are placed in different metro edge availability domains. Configure two VLAN attachments in one region and two VLAN attachments in another region, and configure regional dynamic routing on the VPC.

Question 10

You have deployed an HTTP(s) load balancer, but health checks to port 80 on the Compute Engine virtual machine instance are failing, and no traffic is sent to your instances. You want to resolve the problem. Which commands should you run?

Options:

A.

gcloud compute instances add-access-config instance-1

B.

gcloud compute firewall-rules create allow-lb --network load-balancer --allow tcp --destination-ranges 130.211.0.0/22,35.191.0.0/16 --direction EGRESS

C.

gcloud compute firewall-rules create allow-lb --network load-balancer --allow tcp --source-ranges 130.211.0.0/22,35.191.0.0/16 --direction INGRESS

D.

gcloud compute health-checks update http health-check --unhealthy-threshold 10

Question 11

You are troubleshooting an application in your organization's Google Cloud network that is not functioning as expected. You suspect that packets are getting lost somewhere. The application sends packets intermittently at a low volume from a Compute Engine VM to a destination on your on-premises network through a pair of Cloud Interconnect VLAN attachments. You validated that the Cloud Next Generation Firewall (Cloud NGFW) rules do not have any deny statements blocking egress traffic, and you do not have any explicit allow rules. Following Google-recommended practices, you need to analyze the flow to see if packets are being sent correctly out of the VM to isolate the issue. What should you do?

Options:

A.

Create a packet mirroring policy that is configured with your VM as the source and destined to a collector. Analyze the packet captures.

B.

Enable VPC Flow Logs on the subnet that the VM is deployed in with sample_rate = 1.0, and run a query in Logs Explorer to analyze the packet flow.

C.

Enable Firewall Rules Logging on your firewall rules and review the logs.

D.

Verify the network/attachment/egress_dropped_packet.s_count Cloud Interconnect VLAN attachment metric.

Question 12

You want to apply a new Cloud Armor policy to an application that is deployed in Google Kubernetes Engine (GKE). You want to find out which target to use for your Cloud Armor policy.

Which GKE resource should you use?

Options:

A.

GKE Node

B.

GKE Pod

C.

GKE Cluster

D.

GKE Ingress

Question 13

You are the network administrator responsible for hybrid connectivity at your organization. Your developer team wants to use Cloud SQL in the us-west1 region in your Shared VPC. You configured a Dedicated Interconnect connection and a Cloud Router in us-west1, and the connectivity between your Shared VPC and on-premises data center is working as expected. You just created the private services access connection required for Cloud SQL using the reserved IP address range and default settings. However, your developers cannot access the Cloud SQL instance from on-premises. You want to resolve the issue. What should you do?

Options:

A.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

Create a custom route advertisement in your Cloud Router to advertise the Cloud SQL IP address range.

B.

Change the VPC routing mode to global.

Create a custom route advertisement in your Cloud Router to advertise the Cloud SQL IP address range.

C.

Create an additional Cloud Router in us-west2.

Create a new Border Gateway Protocol (BGP) peering connection to your on-premises data center.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

D.

Change the VPC routing mode to global.

Modify the VPC Network Peering connection used for Cloud SQL, and enable the import and export of routes.

Question 14

You are planning a large application deployment in Google Cloud that includes on-premises connectivity. The application requires direct connectivity between workloads in all regions and on-premises locations without address translation, but all RFC 1918 ranges are already in use in the on-premises locations. What should you do?

Options:

A.

Use multiple VPC networks with a transit network using VPC Network Peering.

B.

Use overlapping RFC 1918 ranges with multiple isolated VPC networks.

C.

Use overlapping RFC 1918 ranges with multiple isolated VPC networks and Cloud NAT.

D.

Use non-RFC 1918 ranges with a single global VPC.

Question 15

You have deployed a proof-of-concept application by manually placing instances in a single Compute Engine zone. You are now moving the application to production, so you need to increase your application availability and ensure it can autoscale.

How should you provision your instances?

Options:

A.

Create a single managed instance group, specify the desired region, and select Multiple zones for the location.

B.

Create a managed instance group for each region, select Single zone for the location, and manually distribute instances across the zones in that region.

C.

Create an unmanaged instance group in a single zone, and then create an HTTP load balancer for the instance group.

D.

Create an unmanaged instance group for each zone, and manually distribute the instances across the desired zones.

Question 16

You have created an HTTP(S) load balanced service. You need to verify that your backend instances are responding properly.

How should you configure the health check?

Options:

A.

Set request-path to a specific URL used for health checking, and set proxy-header to PROXY_V1.

B.

Set request-path to a specific URL used for health checking, and set host to include a custom host header that identifies the health check.

C.

Set request-path to a specific URL used for health checking, and set response to a string that the backend service will always return in the response body.

D.

Set proxy-header to the default value, and set host to include a custom host header that identifies the health check.

Question 17

You recently deployed your application in Google Cloud. You need to verify your Google Cloud network configuration before deploying your on-premises workloads. You want to confirm that your Google Cloud network configuration allows traffic to flow from your cloud resources to your on- premises network. This validation should also analyze and diagnose potential failure points in your Google Cloud network configurations without sending any data plane test traffic. What should you do?

Options:

A.

Use Network Intelligence Center's Connectivity Tests.

B.

Enable Packet Mirroring on your application and send test traffic.

C.

Use Network Intelligence Center's Network Topology visualizations.

D.

Enable VPC Flow Logs and send test traffic.

Question 18

Your organization uses a Shared VPC architecture with a host project and three service projects. You have Compute Engine instances that reside in the service projects. You have critical workloads in your on-premises data center. You need to ensure that the Google Cloud instances can resolve on-premises hostnames via the Dedicated Interconnect you deployed to establish hybrid connectivity. What should you do?

Options:

A.

Create a Cloud DNS private forwarding zone in the host project of the Shared VPC that forwards the private zone to the on-premises DNS servers.

In your Cloud Router, add a custom route advertisement for the IP 35.199.192.0/19 to the on-premises environment.

B.

Create a Cloud DNS private forwarding zone in the host project of the Shared VPC that forwards the Private zone to the on-premises DNS servers.

In your Cloud Router, add a custom route advertisement for the IP 169.254 169.254 to the on-premises environment.

C.

Configure a Cloud DNS private zone in the host project of the Shared VPC.

Set up DNS forwarding to your Google Cloud private zone on your on-premises DNS servers to point to the inbound forwarder IP address in your host project

In your Cloud Router, add a custom route advertisement for the IP 169.254 169 254 to the on-premises environment.

D.

Configure a Cloud DNS private zone in the host project of the Shared VPC.

Set up DNS forwarding to your Google Cloud private zone on your on-premises DNS servers to point to the inbound forwarder IP address in your host project.

Configure a DNS policy in the Shared VPC to allow inbound query forwarding with your on-premises DNS server as the alternative DNS server.

Question 19

You are configuring an HA VPN connection between your Virtual Private Cloud (VPC) and on-premises network. The VPN gateway is named VPN_GATEWAY_1. You need to restrict VPN tunnels created in the project to only connect to your on-premises VPN public IP address: 203.0.113.1/32. What should you do?

Options:

A.

Configure a firewall rule accepting 203.0.113.1/32, and set a target tag equal to VPN_GATEWAY_1.

B.

Configure the Resource Manager constraint constraints/compute.restrictVpnPeerIPs to use an allowList consisting of only the 203.0.113.1/32 address.

C.

Configure a Google Cloud Armor security policy, and create a policy rule to allow 203.0.113.1/32.

D.

Configure an access control list on the peer VPN gateway to deny all traffic except 203.0.113.1/32, and attach it to the primary external interface.

Question 20

You have several microservices running in a private subnet in an existing Virtual Private Cloud (VPC). You need to create additional serverless services that use Cloud Run and Cloud Functions to access the microservices. The network traffic volume between your serverless services and private microservices is low. However, each serverless service must be able to communicate with any of your microservices. You want to implement a solution that minimizes cost. What should you do?

Options:

A.

Deploy your serverless services to the serverless VPC. Peer the serverless service VPC to the existing VPC. Configure firewall rules to allow traffic between the serverless services and your existing microservices.

B.

Create a serverless VPC access connector for each serverless service. Configure the connectors to allow traffic between the serverless services and your existing microservices.

C.

Deploy your serverless services to the existing VPC. Configure firewall rules to allow traffic between the serverless services and your existing microservices.

D.

Create a serverless VPC access connector. Configure the serverless service to use the connector for communication to the microservices.

Question 21

Question:

You reviewed the user behavior for your main application, which uses an external global Application Load Balancer, and found that the backend servers were overloaded due to erratic spikes in client requests. You need to limit concurrent sessions and return an HTTP 429 "Too Many Requests" response back to the client while following Google-recommended practices. What should you do?

Options:

A.

Create a Cloud Armor security policy, and apply the predefined Open Worldwide Application Security Project (OWASP) rules to automatically implement the rate limit per client IP address.

B.

Configure the load balancer to accept only the defined amount of requests per client IP address, increase the backend servers to support more traffic, and redirect traffic to a different backend to burst traffic.

C.

Configure a VM with Linux, implement the rate limit through iptables, and use a firewall rule to send an HTTP 429 response to the client application.

D.

Create a Cloud Armor security policy, and associate the policy with the load balancer. Configure the security policy's settings as follows: action: throttle, conform-action: allow, exceed-action: deny-429.

Question 22

You recently deployed Cloud VPN to connect your on-premises data canter to Google Cloud. You need to monitor the usage of this VPN and set up alerts in case traffic exceeds the maximum allowed. You need to be able to quickly decide whether to add extra links or move to a Dedicated Interconnect. What should you do?

Options:

A.

In the Network Intelligence Canter, check for the number of packet drops on the VPN.

B.

In the Google Cloud Console, use Monitoring Query Language to create a custom alert for bandwidth utilization.

C.

In the Monitoring section of the Google Cloud Console, use the Dashboard section to select a default dashboard for VPN usage.

D.

In the VPN section of the Google Cloud Console, select the VPN under hybrid connectivity, and then select monitoring to display utilization on the dashboard.

Question 23

You want to implement an IPSec tunnel between your on-premises network and a VPC via Cloud VPN. You need to restrict reachability over the tunnel to specific local subnets, and you do not have a device capable of speaking Border Gateway Protocol (BGP).

Which routing option should you choose?

Options:

A.

Dynamic routing using Cloud Router

B.

Route-based routing using default traffic selectors

C.

Policy-based routing using a custom local traffic selector

D.

Policy-based routing using the default local traffic selector

Question 24

You are a network administrator at your company planning a migration to Google Cloud and you need to finish the migration as quickly as possible, To ease the transition, you decided to use the same architecture as your on-premises network' a hub-and-spoke model. Your on-premises architecture consists of over 50 spokes. Each spoke does not have connectivity to the other spokes, and all traffic IS sent through the hub for security reasons. You need to ensure that the Google Cloud architecture matches your on-premises architecture. You want to implement a solution that minimizes management overhead and cost, and uses default networking quotas and limits. What should you do?

Options:

A.

Connect all the spokes to the hub with Cloud VPN.

B.

Connect all the spokes to the hub with VPC Network Peering.

C.

Connect all the spokes to the hub With Cloud VPN. Use a third-party network appliance as a default gateway to prevent connectivity between the spokes

D.

Connect all the spokes to the hub with VPC Network Peering. Use a third-party network appliance as a default gateway to prevent connectivity between the spokes.

Question 25

You need to ensure your personal SSH key works on every instance in your project. You want to accomplish this as efficiently as possible.

What should you do?

Options:

A.

Upload your public ssh key to the project Metadata.

B.

Upload your public ssh key to each instance Metadata.

C.

Create a custom Google Compute Engine image with your public ssh key embedded.

D.

Use gcloud compute ssh to automatically copy your public ssh key to the instance.

Question 26

You are deploying an application that runs on Compute Engine instances. You need to determine how to expose your application to a new customer You must ensure that your application meets the following requirements

• Maps multiple existing reserved external IP addresses to the Instance

• Processes IP Encapsulating Security Payload (ESP) traffic

What should you do?

Options:

A.

Configure a target pool, and create protocol forwarding rules for each external IP address.

B.

Configure a backend service, and create an external network load balancer for each external IP address

C.

Configure a target instance, and create a protocol forwarding rule for each external IP address to be mapped to the instance.

D.

Configure the Compute Engine Instances' network Interface external IP address from None to Ephemeral Add as many external IP addresses as required

Question 27

You are trying to update firewall rules in a shared VPC for which you have been assigned only Network Admin permissions. You cannot modify the firewall rules. Your organization requires using the least privilege necessary.

Which level of permissions should you request?

Options:

A.

Security Admin privileges from the Shared VPC Admin.

B.

Service Project Admin privileges from the Shared VPC Admin.

C.

Shared VPC Admin privileges from the Organization Admin.

D.

Organization Admin privileges from the Organization Admin.

Question 28

You are configuring load balancing for a standard three-tier (web, application, and database) application. You have configured an external HTTP(S) load balancer for the web servers. You need to configure load balancing for the application tier of servers. What should you do?

Options:

A.

Configure a forwarding rule on the existing load balancer for the application tier.

B.

Configure equal cost multi-path routing on the application servers.

C.

Configure a new internal HTTP(S) load balancer for the application tier.

D.

Configure a URL map on the existing load balancer to route traffic to the application tier.

Question 29

You have recently been put in charge of managing identity and access management for your organization. You have several projects and want to use scripting and automation wherever possible. You want to grant the editor role to a project member.

Which two methods can you use to accomplish this? (Choose two.)

Options:

A.

GetIamPolicy() via REST API

B.

setIamPolicy() via REST API

C.

gcloud pubsub add-iam-policy-binding Sprojectname --member user:Susername --role roles/editor

D.

gcloud projects add-iam-policy-binding Sprojectname --member user:Susername --role roles/editor

E.

Enter an email address in the Add members field, and select the desired role from the drop-down menu in the GCP Console.

Question 30

You are designing an IP address scheme for new private Google Kubernetes Engine (GKE) clusters. Due to IP address exhaustion of the RFC 1918 address space In your enterprise, you plan to use privately used public IP space for the new clusters. You want to follow Google-recommended practices. What should you do after designing your IP scheme?

Options:

A.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters. Re-use the secondary address range for the pods across multiple private GKE clusters

B.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters Re-use the secondary address range for the services across multiple private GKE clusters

C.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster with the following options selected and

D.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster With the following options selected --disable-default-snat, —enable-ip-alias, and—enable-private-nodes

Question 31

Your organization has a Google Cloud Virtual Private Cloud (VPC) with subnets in us-east1, us-west4, and europe-west4 that use the default VPC configuration. Employees in a branch office in Europe need to access the resources in the VPC using HA VPN. You configured the HA VPN associated with the Google Cloud VPC for your organization with a Cloud Router deployed in europe-west4. You need to ensure that the users in the branch office can quickly and easily access all resources in the VPC. What should you do?

Options:

A.

Create custom advertised routes for each subnet.

B.

Configure each subnet’s VPN connections to use Cloud VPN to connect to the branch office.

C.

Configure the VPC dynamic routing mode to Global.

D.

Set the advertised routes to Global for the Cloud Router.

Question 32

You need to configure a Google Kubernetes Engine (GKE) cluster. The initial deployment should have 5 nodes with the potential to scale to 10 nodes. The maximum number of Pods per node is 8. The number of services could grow from 100 to up to 1024. How should you design the IP schema to optimally meet this requirement?

Options:

A.

Configure a /28 primary IP address range for the node IP addresses. Configure a (25 secondary IP range for the Pods. Configure a /22 secondary IP range for the Services.

B.

Configure a /28 primary IP address range for the node IP addresses. Configure a /25 secondary IP range for the Pods. Configure a /21 secondary IP range for the Services.

C.

Configure a /28 primary IP address range for the node IP addresses. Configure a /28 secondary IP range for the Pods. Configure a /21 secondary IP range for the Services.

D.

Configure a /28 primary IP address range for the node IP addresses. Configure a /24 secondary IP range for the Pads. Configure a /22 secondary IP range for the Services.

Question 33

You need to define an address plan for a future new Google Kubernetes Engine (GKE) cluster in your Virtual Private Cloud (VPC). This will be a VPC-native cluster, and the default Pod IP range allocation will be used. You must pre-provision all the needed VPC subnets and their respective IP address ranges before cluster creation. The cluster will initially have a single node, but it will be scaled to a maximum of three nodes if necessary. You want to allocate the minimum number of Pod IP addresses. Which subnet mask should you use for the Pod IP address range?

Options:

A.

/21

B.

/22

C.

/23

D.

/25

Question 34

You have ordered Dedicated Interconnect in the GCP Console and need to give the Letter of Authorization/Connecting Facility Assignment (LOA-CFA) to your cross-connect provider to complete the physical connection.

Which two actions can accomplish this? (Choose two.)

Options:

A.

Open a Cloud Support ticket under the Cloud Interconnect category.

B.

Download the LOA-CFA from the Hybrid Connectivity section of the GCP Console.

C.

Run gcloud compute interconnects describe .

D.

Check the email for the account of the NOC contact that you specified during the ordering process.

E.

Contact your cross-connect provider and inform them that Google automatically sent the LOA/CFA to them via email, and to complete the connection.

Question 35

Question:

Recently, your networking team enabled Cloud CDN for one of the external-facing services that is exposed through an external Application Load Balancer. The application team has already defined which content should be cached within the responses. Upon testing the load balancer, you did not observe any change in performance after the Cloud CDN enablement. You need to resolve the issue. What should you do?

Options:

A.

Configure the CACHE_MAX_STATIC caching mode on Cloud CDN to ensure Cloud CDN caches content depending on responses from the backends.

B.

Configure the USE_ORIGIN_HEADERS caching mode on Cloud CDN to ensure Cloud CDN caches content based on response headers from the backends.

C.

Configure the CACHE_ALL_STATIC caching mode on Cloud CDN to ensure Cloud CDN caches all static content as well as content defined by the backends.

D.

Configure the FORCE_CACHE_ALL caching mode on Cloud CDN to ensure all appropriate content is cached.

Question 36

(You are managing the security configuration of your company's Google Cloud organization. The Operations team needs specific permissions on both a Google Kubernetes Engine (GKE) cluster and a Cloud SQL instance. Two predefined Identity and Access Management (IAM) roles exist that contain a subset of the permissions needed by the team. You need to configure the necessary IAM permissions for this team while following Google-recommended practices. What should you do?)

Options:

A.

Grant the team the two predefined IAM roles.

B.

Create a custom IAM role that combines the permissions from the two relevant predefined roles.

C.

Create a custom IAM role that includes only the required permissions from the predefined roles.

D.

Grant the team the IAM roles of Kubernetes Engine Admin and Cloud SQL Admin.

Question 37

Your company's web server administrator is migrating on-premises backend servers for an application to GCP. Libraries and configurations differ significantly across these backend servers. The migration to GCP will be lift-and-shift, and all requests to the servers will be served by a single network load balancer frontend. You want to use a GCP-native solution when possible.

How should you deploy this service in GCP?

Options:

A.

Create a managed instance group from one of the images of the on-premises servers, and link this instance group to a target pool behind your load balancer.

B.

Create a target pool, add all backend instances to this target pool, and deploy the target pool behind your load balancer.

C.

Deploy a third-party virtual appliance as frontend to these servers that will accommodate the significant differences between these backend servers.

D.

Use GCP's ECMP capability to load-balance traffic to the backend servers by installing multiple equal-priority static routes to the backend servers.

Question 38

You created a new VPC for your development team. You want to allow access to the resources in this VPC via SSH only.

How should you configure your firewall rules?

Options:

A.

Create two firewall rules: one to block all traffic with priority 0, and another to allow port 22 with priority 1000.

B.

Create two firewall rules: one to block all traffic with priority 65536, and another to allow port 3389 with priority 1000.

C.

Create a single firewall rule to allow port 22 with priority 1000.

D.

Create a single firewall rule to allow port 3389 with priority 1000.

Question 39

You are designing an IP address scheme for new private Google Kubernetes Engine (GKE) clusters, Due to IP address exhaustion of the RFC 1918 address space in your enterprise, you plan to use privately used public IP space for the new dusters. You want to follow Google-recommended practices, What should you do after designing your IP scheme?

Options:

A.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters. Re-use the secondary address range for the pods across multiple private GKE clusters.

B.

Create the minimum usable RFC 1918 primary and secondary subnet IP ranges for the clusters Re-use the secondary address range for the services across multiple private GKE clusters.

C.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster With the following options selected: --enab1e-ip-a1ias and --enable-private-nodes.

D.

Create privately used public IP primary and secondary subnet ranges for the clusters. Create a private GKE cluster with the following options selected and – siable-default-snat, --enable-ip-alias, and –enable-private-nodes

Question 40

Your organization is developing a landing zone architecture with the following requirements:

    There should be no communication between production and non-production environments.

    Communication between applications within an environment may be necessary.

    Network administrators should centrally manage all network resources, including subnets, routes, and firewall rules.

    Each application should be billed separately.

    Developers of an application within a project should have the autonomy to create their compute resources.

    Up to 1000 applications are expected per environment.

You need to create a design that accommodates these requirements. What should you do?

Options:

A.

Create a design where each project has its own VPC. Ensure all VPCs are connected by a Network Connectivity Center hub that is centrally managed by the network team.

B.

Create a design that implements a single Shared VPC. Use VPC firewall rules with secure tags to enforce micro-segmentation between environments.

C.

Create a design that has one host project with a Shared VPC for the production environment, another host project with a Shared VPC for the non-production environment, and a service project that is associated with the corresponding host project for each initiative.

D.

Create a design that has a Shared VPC for each project. Implement hierarchical firewall policies to apply micro-segmentation between VPCs.

Question 41

You are in the early stages of planning a migration to GCP. You want to test the functionality of your hybrid cloud design before you start to implement it in production. The design includes services running on a Compute Engine Virtual Machine instance that need to communicate to on-premises servers using private IP addresses. The on-premises servers have connectivity to the internet, but you have not yet established any Cloud Interconnect connections. You want to choose the lowest cost method of enabling connectivity between your instance and on-premises servers and complete the test in 24 hours.

Which connectivity method should you choose?

Options:

A.

Cloud VPN

B.

50-Mbps Partner VLAN attachment

C.

Dedicated Interconnect with a single VLAN attachment

D.

Dedicated Interconnect, but don’t provision any VLAN attachments

Question 42

Your company has recently installed a Cloud VPN tunnel between your on-premises data center and your Google Cloud Virtual Private Cloud (VPC). You need to configure access to the Cloud Functions API for your on-premises servers. The configuration must meet the following requirements:

Certain data must stay in the project where it is stored and not be exfiltrated to other projects.

Traffic from servers in your data center with RFC 1918 addresses do not use the internet to access Google Cloud APIs.

All DNS resolution must be done on-premises.

The solution should only provide access to APIs that are compatible with VPC Service Controls.

What should you do?

Options:

A.

Create an A record for private.googleapis.com using the 199.36.153.8/30 address range.

Create a CNAME record for *.googleapis.com that points to the A record.

Configure your on-premises routers to use the Cloud VPN tunnel as the next hop for the addresses you used in the A record.

Remove the default internet gateway from the VPC where your Cloud VPN tunnel terminates.

B.

Create an A record for restricted.googleapis.com using the 199.36.153.4/30 address range.

Create a CNAME record for *.googleapis.com that points to the A record.

Configure your on-premises routers to use the Cloud VPN tunnel as the next hop for the addresses you used in the A record.

Configure your on-premises firewalls to allow traffic to the restricted.googleapis.com addresses.

C.

Create an A record for restricted.googleapis.com using the 199.36.153.4/30 address range.

Create a CNAME record for *.googleapis.com that points to the A record.

Configure your on-premises routers to use the Cloud VPN tunnel as the next hop for the addresses you used in the A record.

Remove the default internet gateway from the VPC where your Cloud VPN tunnel terminates.

D.

Create an A record for private.googleapis.com using the 199.36.153.8/30 address range.

Create a CNAME record for *.googleapis.com that points to the A record.

Configure your on-premises routers to use the Cloud VPN tunnel as the next hop for the addresses you used in the A record.

Configure your on-premises firewalls to allow traffic to the private.googleapis.com addresses.

Question 43

Question:

You are troubleshooting connectivity issues between Google Cloud and a public SaaS provider. Connectivity between the two environments is through the public internet. Your users are reporting intermittent connection errors when using TCP to connect; however, ICMP tests show no failures. According to users, errors occur around the same time every day. You want to troubleshoot and gather information by using Google Cloud tools that are most likely to provide insights into what is occurring within Google Cloud. What should you do?

Options:

A.

Create a Connectivity Test by using TCP, the source IP address of your test VM, and the destination IP address of the public SaaS provider. Review the live data plane analysis and take the next steps based on the test results.

B.

Enable and review Cloud Logging on your Cloud NAT gateway. Look for logs with errors matching the destination IP address of the public SaaS provider.

C.

Enable the Firewall insights API. Set the deny rule insights observation period to one day. Review the insights to assure there are no firewall rules denying traffic.

D.

Enable and review Cloud Logging for Cloud Armor. Look for logs with errors matching the destination IP address of the public SaaS provider.

Question 44

Your company has a single Virtual Private Cloud (VPC) network deployed in Google Cloud with on-premises connectivity already in place. You are deploying a new application using Google Kubernetes Engine (GKE), which must be accessible only from the same VPC network and on-premises locations. You must ensure that the GKE control plane is exposed to a predefined list of on-premises subnets through private connectivity only. What should you do?

Options:

A.

Create a GKE private cluster with a private endpoint for the control plane. Configure VPC Networking Peering export/import routes and custom route advertisements on the Cloud Routers. Configure authorized networks to specify the desired on-premises subnets.

B.

Create a GKE private cluster with a public endpoint for the control plane. Configure VPC Networking Peering export/import routes and custom route advertisements on the Cloud Routers.

C.

Create a GKE private cluster with a private endpoint for the control plane. Configure authorized networks to specify the desired on-premises subnets.

D.

Create a GKE public cluster. Configure authorized networks to specify the desired on-premises subnets.

Question 45

You have a Cloud Storage bucket in Google Cloud project XYZ. The bucket contains sensitive data. You need to design a solution to ensure that only instances belonging to VPCs under project XYZ can access the data stored in this Cloud Storage bucket. What should you do?

Options:

A.

Configure Private Google Access to privately access the Cloud Storage service using private IP addresses.

B.

Configure a VPC Service Controls perimeter around project XYZ, and include storage.googleapis.com as a restricted service in the service perimeter.

C.

Configure Cloud Storage with projectPrivate Access Control List (ACL) that gives permission to the project team based on their roles.

D.

Configure Private Service Connect to privately access Cloud Storage from all VPCs under project XYZ.

Question 46

One instance in your VPC is configured to run with a private IP address only. You want to ensure that even if this instance is deleted, its current private IP address will not be automatically assigned to a different instance.

In the GCP Console, what should you do?

Options:

A.

Assign a public IP address to the instance.

B.

Assign a new reserved internal IP address to the instance.

C.

Change the instance’s current internal IP address to static.

D.

Add custom metadata to the instance with key internal-address and value reserved.

Question 47

Your company's security team wants to limit the type of inbound traffic that can reach your web servers to protect against security threats. You need to configure the firewall rules on the web servers within your Virtual Private Cloud (VPC) to handle HTTP and HTTPS web traffic for TCP only. What should you do?

Options:

A.

Create an allow on match ingress firewall rule with the target tag “web-server” to allow all IP addresses for TCP port 80.

B.

Create an allow on match egress firewall rule with the target tag “web-server” to allow all IP addresses for TCP port 80.

C.

Create an allow on match ingress firewall rule with the target tag “web-server” to allow all IP addresses for TCP ports 80 and 443.

D.

Create an allow on match egress firewall rule with the target tag “web-server" to allow web server IP addresses for TCP ports 60 and 443.

Question 48

You are disabling DNSSEC for one of your Cloud DNS-managed zones. You removed the DS records from your zone file, waited for them to expire from the cache, and disabled DNSSEC for the zone. You receive reports that DNSSEC validating resolves are unable to resolve names in your zone.

What should you do?

Options:

A.

Update the TTL for the zone.

B.

Set the zone to the TRANSFER state.

C.

Disable DNSSEC at your domain registar.

D.

Transfer ownership of the domain to a new registar.

Question 49

You need to give each member of your network operations team least-privilege access to create, modify, and delete Cloud Interconnect VLAN attachments.

What should you do?

Options:

A.

Assign each user the editor role.

B.

Assign each user the compute.networkAdmin role.

C.

Give each user the following permissions only: compute.interconnectAttachments.create, compute.interconnectAttachments.get.

D.

Give each user the following permissions only: compute.interconnectAttachments.create, compute.interconnectAttachments.get, compute.routers.create, compute.routers.get, compute.routers.update.

Question 50

Your company has defined a resource hierarchy that includes a parent folder with subfolders for each department. Each department defines their respective project and VPC in the assigned folder and has the appropriate permissions to create Google Cloud firewall rules. The VPCs should not allow traffic to flow between them. You need to block all traffic from any source, including other VPCs, and delegate only the intra-VPC firewall rules to the respective departments. What should you do?

Options:

A.

Create a VPC firewall rule in each VPC to block traffic from any source, with priority 0.

B.

Create a VPC firewall rule in each VPC to block traffic from any source, with priority 1000.

C.

Create two hierarchical firewall policies per department's folder with two rules in each: a high-priority rule that matches traffic from the private CIDRs assigned to the respective VPC and sets the action to allow, and another lower-priority rule that blocks traffic from any other source.

D.

Create two hierarchical firewall policies per department's folder with two rules in each: a high-priority rule that matches traffic from the private CIDRs assigned to the respective VPC and sets the action to goto_next, and another lower-priority rule that blocks traffic from any other source.

Question 51

You have provisioned a Partner Interconnect connection to extend connectivity from your on-premises data center to Google Cloud. You need to configure a Cloud Router and create a VLAN attachment to connect to resources inside your VPC. You need to configure an Autonomous System number (ASN) to use with the associated Cloud Router and create the VLAN attachment.

What should you do?

Options:

A.

Use a 4-byte private ASN 4200000000-4294967294.

B.

Use a 2-byte private ASN 64512-65535.

C.

Use a public Google ASN 15169.

D.

Use a public Google ASN 16550.

Question 52

You are increasing your usage of Cloud VPN between on-premises and GCP, and you want to support more traffic than a single tunnel can handle. You want to increase the available bandwidth using Cloud VPN.

What should you do?

Options:

A.

Double the MTU on your on-premises VPN gateway from 1460 bytes to 2920 bytes.

B.

Create two VPN tunnels on the same Cloud VPN gateway that point to the same destination VPN gateway IP address.

C.

Add a second on-premises VPN gateway with a different public IP address. Create a second tunnel on the existing Cloud VPN gateway that forwards the same IP range, but points at the new on-premises gateway IP.

D.

Add a second Cloud VPN gateway in a different region than the existing VPN gateway. Create a new tunnel on the second Cloud VPN gateway that forwards the same IP range, but points to the existing on-premises VPN gateway IP address.

Question 53

Your organization's security policy requires that all internet-bound traffic return to your on-premises data center through HA VPN tunnels before egressing to the internet, while allowing virtual machines (VMs) to leverage private Google APIs using private virtual IP addresses 199.36.153.4/30. You need to configure the routes to enable these traffic flows. What should you do?

Options:

A.

Configure a custom route 0.0.0.0/0 with a priority of 500 whose next hop is the default internet gateway. Configure another custom route 199.36.153.4/30 with priority of 1000 whose next hop is the VPN tunnel back to the on-premises data center.

B.

Configure a custom route 0.0.0.0/0 with a priority of 1000 whose next hop is the internet gateway. Configure another custom route 199.36.153.4/30 with a priority of 500 whose next hop is the VPN tunnel back to the on-premises data center.

C.

Announce a 0.0.0.0/0 route from your on-premises router with a MED of 1000. Configure a custom route 199.36.153.4/30 with a priority of 1000 whose next hop is the default internet gateway.

D.

Announce a 0.0.0.0/0 route from your on-premises router with a MED of 500. Configure another custom route 199.36.153.4/30 with a priority of 1000 whose next hop is the VPN tunnel back to the on-

premises data center.

Question 54

Your organization recently exposed a set of services through a global external Application Load Balancer. After conducting some testing, you observed that responses would intermittently yield a non-HTTP 200 response. You need to identify the error. What should you do? (Choose 2 answers)

Options:

A.

Delete the load balancer and backend services. Create a new passthrough Network Load Balancer. Configure a failover group of VMs for the backend.

B.

Access a VM in the VPC through SSH and try to access a backend VM directly. If the request is successful from the VM, increase the quantity of backends.

C.

Enable and review the health check logs. Review the error responses in Cloud Logging.

D.

Validate the health of the backend service. Enable logging for the backend service and identify the error response in Cloud Logging. Determine the cause of the error by reviewing the statusDetails log field.

E.

Validate the health of the backend service. Enable logging on the load balancer and identify the error response in Cloud Logging. Determine the cause of the error by reviewing the statusDetails log field.

Question 55

You have two Google Cloud projects in a perimeter to prevent data exfiltration. You need to move a third project inside the perimeter; however, the move could negatively impact the existing environment. You need to validate the impact of the change. What should you do?

Options:

A.

Enable Firewall Rules Logging inside the third project.

B.

Modify the existing VPC Service Controls policy to include the new project in dry run mode.

C.

Monitor the Resource Manager audit logs inside the perimeter.

D.

Enable VPC Flow Logs inside the third project, and monitor the logs for negative impact.

Question 56

Your organization wants to set up hybrid connectivity with VLAN attachments that terminate in a single Cloud Router with 99.9% uptime. You need to create a network design for your on-premises router that meets those requirements and has an active/passive configuration that uses only one VLAN attachment at a time. What should you do?

Options:

A.

Create a design that uses a BGP multi-exit discriminator (MED) attribute to influence the egress path from Google Cloud to the on-premises environment.

B.

Create a design that uses the as_path BGP attribute to influence the egress path from Google Cloud to the on-premises environment.

C.

Create a design that uses an equal-cost multipath (ECMP) with flow-based hashing on your on-premises devices.

D.

Create a design that uses the local_pref BGP attribute to influence the egress path from Google Cloud to the on-premises environment.

Question 57

You have applications running in the us-west1 and us-east1 regions. You want to build a highly available VPN that provides 99.99% availability to connect your applications from your project to the cloud services provided by your partner's project while minimizing the amount of infrastructure required. Your partner's services are also in the us-west1 and us-east1 regions. You want to implement the simplest solution. What should you do?

Options:

A.

Create one Cloud Router and one HA VPN gateway in each region of your VPC and your partner's VPC. Connect your VPN gateways to the partner's gateways. Enable global dynamic routing in each VPC.

B.

Create one Cloud Router and one HA VPN gateway in the us-west1 region of your VPC. Create one OpenVPN Access Server in each region of your partner's VPC. Connect your VPN gateway to your partner's servers.

C.

Create one OpenVPN Access Server in each region of your VPC and your partner's VPC. Connect your servers to the partner's servers.

D.

Create one Cloud Router and one HA VPN gateway in the us-west1 region of your VPC and your partner's VPC. Connect your VPN gateways to the partner's gateways with a pair of tunnels. Enable global dynamic routing in each VPC.

Question 58

Your team deployed two applications in GKE that are exposed through an external Application Load Balancer. When queries are sent to www.mountkirkgames.com/sales and www.mountkirkgames.com/get-an-analysis, the correct pages are displayed. However, you have received complaints that www.mountkirkgames.com yields a 404 error. You need to resolve this error. What should you do?

Options:

A.

Review the Ingress YAML file. Define the default backend. Reapply the YAML.

B.

Review the Ingress YAML file. Add a new path rule for the * character that directs to the base service. Reapply the YAML.

C.

Review the Service YAML file. Define a default backend. Reapply the YAML.

D.

Review the Service YAML file. Add a new path rule for the * character that directs to the base service. Reapply the YAML.

Question 59

You are responsible for designing a new connectivity solution for your organization's enterprise network to access and use Google Workspace. You have an existing Shared VPC with Compute Engine instances in us-west1. Currently, you access Google Workspace via your service provider's internet access. You want to set up a direct connection between your network and Google. What should you do?

Options:

A.

Order a Dedicated Interconnect connection in the same metropolitan area. Create a VLAN attachment, a Cloud Router in us-west1, and a Border Gateway Protocol (BGP) session between your Cloud Router and your router.

B.

Order a Direct Peering connection in the same metropolitan area. Configure a Border Gateway Protocol (BGP) session between Google and your router.

C.

Configure HA VPN in us-west1. Configure a Border Gateway Protocol (BGP) session between your Cloud Router and your on-premises data center.

D.

Order a Carrier Peering connection in the same metropolitan area. Configure a Border Gateway Protocol (BGP) session between Google and your router.

Question 60

You want to set up two Cloud Routers so that one has an active Border Gateway Protocol (BGP) session, and the other one acts as a standby.

Which BGP attribute should you use on your on-premises router?

Options:

A.

AS-Path

B.

Community

C.

Local Preference

D.

Multi-exit Discriminator

Question 61

Your organization wants to deploy HA VPN over Cloud Interconnect to ensure encryption-in-transit over the Cloud Interconnect connections. You have created a Cloud Router and two encrypted VLAN attachments that have a 5 Gbps capacity and a BGP configuration. The BGP sessions are operational. You need to complete the deployment of the HA VPN over Cloud Interconnect. What should you do?

Options:

A.

Create an HA VPN gateway and associate the gateway with your two encrypted VLAN attachments. Configure the HA VPN Cloud Router, peer VPN gateway resources, and HA VPN tunnels. Use the same encrypted Cloud Router used for the Cloud Interconnect tier.

B.

Enable MACsec for Cloud Interconnect on the VLAN attachments.

C.

Enable MACsec on Partner Interconnect.

D.

Create an HA VPN gateway and associate the gateway with your two encrypted VLAN attachments. Create a new dedicated HA VPN Cloud Router, peer VPN gateway resources, and HA VPN tunnels.

Question 62

Your organization recently re-architected your cloud environment to use Network Connectivity Center. However, an error occurred when you tried to add a new VPC named vpc-dev as a spoke. The error indicated that there was an issue with an existing spoke and the IP space of a VPC named vpc-pre-prod. You must complete the migration quickly and efficiently. What should you do?

Options:

A.

Remove the conflicting VPC spoke for vpc-pre-prod from the set of VPC spokes in Network Connectivity Center. Add the VPC spoke for vpc-dev. Add the previously removed vpc-pre-prod as a VPC spoke.

B.

Delete the VMs associated with the conflicting subnets, then delete the conflicting subnets in vpc-dev. Recreate the subnets with a new IP range and redeploy the previously deleted VMs in the new subnets. Add the VPC spoke for vpc-dev.

C.

Exclude the conflicting IP range by using the --exclude-export-ranges flag when creating the VPC spoke for vpc-dev.

D.

Exclude the conflicting IP range by using the --exclude-export-ranges flag in the hub when attaching the VPC spoke for vpc-dev.

Question 63

You want to deploy a VPN Gateway to connect your on-premises network to GCP. You are using a non BGP-capable on-premises VPN device. You want to minimize downtime and operational overhead when your network grows. The device supports only IKEv2, and you want to follow Google-recommended practices.

What should you do?

Options:

A.

• Create a Cloud VPN instance.• Create a policy-based VPN tunnel per subnet.• Configure the appropriate local and remote traffic selectors to match your local and remote networks.• Create the appropriate static routes.

B.

• Create a Cloud VPN instance.• Create a policy-based VPN tunnel.• Configure the appropriate local and remote traffic selectors to match your local and remote networks.• Configure the appropriate static routes.

C.

• Create a Cloud VPN instance.• Create a route-based VPN tunnel.• Configure the appropriate local and remote traffic selectors to match your local and remote networks.• Configure the appropriate static routes.

D.

• Create a Cloud VPN instance.• Create a route-based VPN tunnel.• Configure the appropriate local and remote traffic selectors to 0.0.0.0/0.• Configure the appropriate static routes.